Efficient production of L-ribose with a recombinant Escherichia coli biocatalyst.
نویسندگان
چکیده
A new synthetic platform with potential for the production of several rare sugars, with l-ribose as the model target, is described. The gene encoding the unique NAD-dependent mannitol-1-dehydrogenase (MDH) from Apium graveolens (garden celery) was synthetically constructed for optimal expression in Escherichia coli. This MDH enzyme catalyzes the interconversion of several polyols and their l-sugar counterparts, including the conversion of ribitol to l-ribose. Expression of recombinant MDH in the active form was successfully achieved, and one-step purification was demonstrated. Using the created recombinant E. coli strain as a whole-cell catalyst, the synthetic utility was demonstrated for production of l-ribose, and the system was improved using shaken flask experiments. It was determined that addition of 50 to 500 microM ZnCl(2) and addition of 5 g/liter glycerol both improved production. The final levels of conversion achieved were >70% at a concentration of 40 g/liter and >50% at a concentration of 100 g/liter. The best conditions determined were then scaled up to a 1-liter fermentation that resulted in 55% conversion of 100 g/liter ribitol in 72 h, for a volumetric productivity of 17.4 g liter(-1) day(-1). This system represents a significantly improved method for the large-scale production of l-ribose.
منابع مشابه
Efficient Process Development of Recombinant Human Granulocyte Colony-Stimulating Factor (rh-GCSF) Production in Escherichia coli
Background: The protein hormone granulocyte colony-stimulating factor (GCSF) stimulates the production of white blood cells and plays an important role in medical treatment of cancer patients. Methods: An efficient process was developed for heterologous expression of human GCSF in E. coli BL21 (DE3). The feeding rate was adjusted to achieve the maximum attainable specific growth rate under crit...
متن کاملImmobilized cells of recombinant Escherichia coli strain for continuous production of L-aspartic acid.
For L-aspartic acid biosynthesis, high production cells of Escherichia coli mutant B-715 and P1 were immobilized in chitosan gel using a technique developed in our laboratory. The immobilization process reduced initial activity of the intact cells, however, the biocatalyst produced was very stabile for long-term use in multi-repeated batch or continuous processes. Temperature influence on the c...
متن کاملOverexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli
Bacterial transporters mediate the exchanges between intracellular and extracellular environments. Modification of transport route could be applied to speed up the metabolic reactions and promote the production of aimed compounds. Herein, lysine 2-monooxygenase (DavB) and δ-aminovaleramidase (DavA) were co-expressed in Escherichia coli BL21(DE3) to produce nylon-5 monomer 5-aminovalerate from l...
متن کاملStability of Recombinant Proteins in Escherichia coli: The Effect of Co-Expression of Five Different Chaperone Sets
Chaperones are produced by prokaryotic, yeast and higher eukaryotic cells for various purposes. Over-expression of each chaperone or sets of them affect the production level of a recombinant protein in the cell. On the basis of this hypothesis, five different plasmids with 5 different combinations of 6 chaperones molecule, transformed into Escherichia coli along with human basic Fibroblast Grow...
متن کاملSimple enzymatic procedure for l‐carnosine synthesis: whole‐cell biocatalysis and efficient biocatalyst recycling
β-Peptides and their derivates are usually stable to proteolysis and have an increased half-life compared with α-peptides. Recently, β-aminopeptidases were described as a new enzyme class that enabled the enzymatic degradation and formation of β-peptides. As an alternative to the existing chemical synthesis routes, the aim of the present work was to develop a whole-cell biocatalyst for the synt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 74 10 شماره
صفحات -
تاریخ انتشار 2008